Learning the Local Statistics of Optical Flow

نویسندگان

  • Dan Rosenbaum
  • Daniel Zoran
  • Yair Weiss
چکیده

Motivated by recent progress in natural image statistics, we use newly available datasets with ground truth optical flow to learn the local statistics of optical flow and compare the learned models to prior models assumed by computer vision researchers. We find that a Gaussian mixture model (GMM) with 64 components provides a significantly better model for local flow statistics when compared to commonly used models. We investigate the source of the GMM’s success and show it is related to an explicit representation of flow boundaries. We also learn a model that jointly models the local intensity pattern and the local optical flow. In accordance with the assumptions often made in computer vision, the model learns that flow boundaries are more likely at intensity boundaries. However, when evaluated on a large dataset, this dependency is very weak and the benefit of conditioning flow estimation on the local intensity pattern is marginal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect

This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance.  First the problem is encoded with a...

متن کامل

Optical Flow Diffusion with Robustified Kernels

This paper provides a comparison study among a set of robust diffusion algorithms for processing optical flows. The proposed algorithms combine the smoothing ability of the heat kernel, modelled by the local Hessian, and the outlier rejection mechanisms of robust statistics algorithms. Smooth optical flow variation can be modelled very well using heat kernels. The diffusion kernel is considered...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

تحلیل حرکت جریانات دریائی در تصاویر حرارتی سطح آب دریا

Oceanographic images obtained from environmental satellites by a wide range of sensors allow characterizing natural phenomena through different physical measurements. For instance Sea Surface Temperature (SST) images, altimetry data and ocean color data can be used for characterizing currents and vortex structures in the ocean. The purpose of this thesis is to derive a relatively complete frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013